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Testing the equality of variances during hypothesis testing is an important 
preliminary step before using statistical tests such as the t-test or ANOVA.  
It has been demonstrated that many tests for equality of variances are 
sensitive to non-normal distributions.  Using computer simulation, the 
present simulation study investigates the Type I error rate and statistical 
power of the nonparametric and median versions of the Levene test for 
equality of variances when there are three, four or five groups used in the 
analysis. For each of the three, four and five group conditions there are 
several levels of sample size, variance ratio, group sample size imbalance, 
and degree of skew in the population distribution included in the simulation. 
Results show that the nonparametric Levene test shows good statistical 
properties when samples come from heavily skewed population 
distributions, when overall sample size was small, and when groups were 
unbalanced. The findings also allow for a relative comparison of the 
median-based Levene test of equality of variances under a variety of 
conditions. Practical implications for the testing for equality of variances are 
discussed.  

 

 

A common practice in statistical data analysis in the psychological, 
behavioral and educational research is the comparison of means from two or 
more groups using an analysis of variance (ANOVA) type statistical test. A 
typical step in this accepted statistical practice is to conduct a test of 
equality of variances prior to the running of the ANOVA to determine 
whether or not the assumption of homogeneity of variances is tenable. 
Heterogeneity of variance occurs in when one or more groups of sample 
scores have a wider dispersion of scores than other groups to be used in a 
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between groups analysis. The consequence of heterogeneity of variances is 
that each group will contribute differentially to the estimation of the within 
groups variance parameter, and thus the sums of squares within groups will 
be a biased estimate of the population variance parameter leading to 
increases in the frequency of Type I and Type II errors and thus impacting 
the power of the test being used by reducing its capacity to correctly reject 
the null hypothesis.  

Box (1953) noted that the F-test for equality of variances was overly 
sensitive in terms of inflated Type I error rates when the data distributions 
were sampled from non-normal (i.e., highly skewed or kurtotic 
distributions). Subsequent to Box’s work, numerous tests of equality of 
variances have been developed (e.g., Levene, 1960; Brown & Forsythe, 
1974). These tests were developed to be more robust to the violations of the 
assumptions of normality. Often these procedures involved transforming the 
raw score and carrying out an ANOVA on the transformed score. For 
example, the mean based Levene test transforms scores on the dependent 
variable by subtracting the mean from each score. Subsequent to this step, a 
one-way ANOVA is conducted using the transformed scores.   

A nonparametric Levene (NPL) test was introduced by Nordstokke 
and Zumbo (2007) and has been shown to have good statistical properties in 
both simulated and real data settings (Nordstokke & Zumbo, 2010; 
Nordstokke, Zumbo, Cairns, & Saklofske, 2011). The NPL was developed 
as an extension of the mean based Levene where a rank transformation is 
applied to the data prior to conducting the ANOVA. This equates to using a 
parametric ANOVA on rank transformed data.  The utilization of rank 
based transformations to avoid the assumption of normality was suggested 
by Friedman (1937) and more recently by Conover and Iman (1981) as a 
viable solution to nonnormal distributions. Statisticians and researchers 
generally agree that replacement of scores on the dependent variable by 
ranks before performing a parametric analysis of location yields the same 
decision as a nonparametric test (Zimmerman, 2012). The utilization of this 
approach is what gives the NPL its strengths for use in practical data 
analysis settings where data may come from nonnormal population 
distributions as the rank transformation reduces the impact of nonnormal 
data and outliers (Friedman, 1937).  

As Nordstokke and Zumbo (2007; 2010) describe it, the steps of the 
NPL involves pooling the data from all groups, ranking the scores allowing, 
if necessary, for ties, placing the rank values back into their original groups, 
and running the Levene test on the ranks.  The NPL test can be written as 
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            ANOVA ( R
jij XR − ),                        (1) 

which is  a one-way analysis of variance  that is conducted on the absolute 
value of the mean of the ranks for each group, denoted 𝑋!!, subtracted from 
each individual’s rank 𝑅!", for individual i in group j. SPSS syntax used to 
compute the NPL for this study is listed in Appendix 1. 

The purpose of the current study is to extend the simulation findings 
from Nordstokke and Zumbo (2010) to the three, four and five group 
ANOVA cases. To be consistent with Nordstokke and Zumbo (2010), the 
simulation includes results of the test that is often considered the “gold 
standard” of tests for equal variances, the Levene median (ML) test 
developed by Brown and Forsythe (1974) because, as Conover, Johnson 
and Johnson (1981) showed, one of the top performing tests for equality of 
variances in their simulation that compared 56 tests for equality of variances 
was the median based Levene test. The ML test for equality of variances 
can be expressed as, 

ANOVA ( jij MdnX − ), 

wherein, the analysis of variance is conducted on the absolute deviations of 
an individual’s score, denoted  𝑋!", from their groups median value, denoted 
𝑀𝑑𝑛!, for each individual i in group j. 

This study will investigate the Type I error rates and statistical power 
of the NPL and ML in the three, four and five group ANOVA cases across 
several overall sample sizes with varying degrees of skew present in the 
population distribution, group imbalance and variance imbalance. The 
purpose of using a wide variety of conditions is to attempt to simulate a 
wide variety of conditions that might be found across a wide variety of 
research settings.  

METHOD 
Data Generation 
Standard simulation methodology was employed to perform a 

computer simulation (e.g., Nordstokke & Zumbo, 2007; 2010; Zimmerman, 
1987; 2004). Population distributions were generated and the statistical tests 
were performed using the statistical software package for the social 
sciences, SPSS 20.  A pseudo random number sampling method with the 
initial seed selected randomly was used to produce χ2 distributions.  An 
example of the syntax used to create the population distribution of one 
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group belonging to a normal distribution can be found in Appendix 1 of 
Nordstokke and Zumbo (2010).  Building from Nordstokke and Zumbo 
(2007; 2010), the design of the three group simulation study was a 4 x 3 x 5 
x 9 completely crossed design with: (a) four levels of skew of the 
population distribution, (b) three levels of sample size, (c) five levels of 
sample size ratio, 3/2/1 nnn , and (d) nine levels of ratios of variances. The 
dependent variables in this part of the simulation design are the proportion 
of rejections of the null hypothesis in each cell of the design and, more 
specifically, the Type I error rates (when the variances are equal), and 
power under the eight conditions of unequal variances.   The design of the 
four group simulation study was a 4 x 3 x 7 x 7 completely crossed design 
with: (a) four levels of skew of the population distribution, (b) three levels 
of sample size, (c) seven levels of sample size ratio, 4/3/2/1 nnnn , and (d) 
seven levels of ratios of variances.  Again, the dependent variables in this 
section of the simulation design are once again the proportion of rejections 
of the null hypothesis in each cell of the design and, more specifically, the 
Type I error rates (when the variances are equal), and power under the six 
conditions of unequal variances.  The design for the five group simulation 
study was 4 x 3 x 3 x 5 completely crossed design with (a) four levels of 
skew, (b) three levels of sample size, (c) three levels of sample size ratio, 

5/4/3/2/1 nnnnn , and (d) five levels of variance ratio.  
Staying consistent with Nordstokke and Zumbo (2007; 2010), we only 

investigate and discuss statistical power in those conditions wherein the 
nominal Type I error rate, in our study .05(±.025), is maintained. 

 
Shape of the population distributions1  
Four levels of skew 0, 1, 2, and 3 were investigated. As is well 

known, as the degrees of freedom of a χ2 distribution increase it more 
closely approximates a normal distribution.  The skew of the distributions 
for both groups were always the same for every replication. 

 
 

                                                
1 It should be noted that the population skew was determined empirically for large sample 
sizes of 120,000 values with 1000, 7.4, 2.2, and .83 degrees of freedom resulting in skew 
values of 0.03, 1.03, 1.92, and 3.06, respectively; because the degrees of freedom are not 
whole numbers, the distributions are approximations.  The mathematical relation is

1
8
dfγ = . 
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Sample Sizes  
For the three group simulation, three different sample sizes,

321 nnnN ++= , were investigated: 30, 60, and 90.  Five levels of ratio of 
group sizes ( 321 // nnn : 1/1/1, 1/1/4, 1/2/3, 3/2/1, and 4/1/1) were 
investigated.  For the four group simulation, three different sample sizes,

4321 nnnnN +++= , were investigated: 40, 80, and 120.  Seven levels of 
ratio of group sizes, ( 4321 /// nnnn :1/1/1/1, 1/1/4/4, 1/1/2/4, 1/1/1/2, 
2/1/1/1, 4/2/1/1, 4/4/1/1) were investigated.  For the five group simulations, 
three different sample sizes, 54321 nnnnnN ++++= , were investigated: 
30, 60, and 120. Three levels of ratio of group sizes, ( 54321 //// nnnnn : 
1/1/1/1/1, 1/1/1/1/2 and 1/1/2/2/4) were used. 

 
Population variance ratios  
For the three group simulation, nine levels of variance ratios were 

investigated ( 2
3

2
2

2
1 // σσσ : 1/1/4, 1/4/4, 1/1/2, 1/2/2, 1/1/1, 2/2/1, 2/1/1, 

4/4/1, and 4/1/1).  For the four group simulation, seven levels of variance 
ratios were investigated ( 2

4
2
3

2
2

2
1 /// σσσσ : 1/1/4/4, 1/1/2/4, 1/1/1/2, 1/1/1/1, 

2/1/1/1, 4/2/1/1, and 4/4/1/1). For the five group simulation, five levels of 
variance ratios were investigated (1/1/1/1/4, 1/1/1/1/2, 1/1/1/1/1, 2/1/1/1/1, 
and 4/1/1/1/1). Variance ratios were manipulated by multiplying the 
population of one or more of the groups in the design by a constant to create 
an imbalance in the variance ratios.  The value of the constant was 
dependent on the amount of variance imbalance that was required for the 
cell of the design.  For example, to create a variance ratio of 2/1/1, the 
scores of group whose variance is to be changed will have their variances 
adjusted by multiplying the selected group’s variance by the square root of 
2.  The design was created so that there were direct pairing and inverse 
pairing in relation to unbalanced groups and direction of variance 
imbalance.  Direct pairing occurs when the larger sample sizes are paired 
with the larger variance and inverse pairing occurs when the smaller sample 
size is paired with the larger variance (Tomarken & Serlin, 1986).  This was 
done to investigate a more complete range of data possibilities.  In addition, 
Keyes and Levy (1997) drew our attention to concern with unequal sample 
sizes, particularly in the case of factorial designs – see also O’Brien (1978, 
1979) for discussion of Levene’s test in additive models for variances.  
Findings suggest that the validity and efficiency of a statistical test is 
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somewhat dependent on the direction of the pairing of sample sizes with the 
ratio of variance. 

As a whole, the complex multivariate variable space represented by 
our simulation design captures many of the possibilities that might be found 
in day-to-day research practice. 

 
Determining Type I Error Rates & Power 
The frequency of Type I errors was tabulated for each cell in the 

design. For the three, four, and five group simulations, there were 540, 588, 
and 180 cells in each of the simulation designs respectively. As a 
description of our methodology, the following will describe the procedure 
for the ML and NPL tests for completing the steps for one cell in the design 
for the three group case as its description is generalizable to the four and 
five group scenarios.  First, for both tests, three similarly distributed 
populations are generated and sampled from; for this example, it was three 
normally distributed populations that were sampled to create three groups. 
In this cell of the simulation design, each group had 10 members, and the 
population variances of the three groups are equal.  This example tests the 
Type I errors for the two tests under the current conditions on the same set 
of data.  For the ML, the absolute deviation from the median is calculated 
for each value in the sampled distribution and a one-way ANOVA is 
performed on these values to test if the variances are significantly different 
at the nominal alpha value of .05 (±.025).  For the NPL, values are pooled 
and ranked, then partitioned back into their respective groups.  A one-way 
ANOVA is then performed on the ranked data of the three groups to 
determine if the variances are statistically significantly different at the 
nominal alpha value of .05 (±.025).  The value of ±.025 represents a liberal 
indicator of robustness and comes from Bradley (1978).  The choice of 
Bradley’s criterion is somewhat arbitrary, although it is the most liberal 
choice between the alternatives, and some of our conclusions may change 
with the other criteria.  It should be noted that when Type I error rates are 
less than .05, the validity of the test is not jeopardized to the same extent as 
they are when they are inflated.  This makes a test invalid if the rate of Type 
I errors are inflated, but when they decrease, the test becomes more 
conservative, reducing power.  Reducing power does not invalidate the 
results of a test, so tests will be considered to be invalid only if the Type I 
error rate is inflated. This procedure was replicated 5000 times for each cell 
in the design.   

 In the cells where the ratio of variances was not equal and that 
maintained their Type I error rates, statistical power is represented by the 
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proportion of times that the ML test, and the NPL test, correctly rejected the 
null hypothesis.  

RESULTS 
Three group simulation 
The Type I error rates for the ML test and the NPL test for all of the 

conditions in the study are illustrated in Table 1.  In all of the conditions of 
the simulation, both tests maintain their Type I error rate, with the ML test 
being somewhat conservative in many of the conditions.  For example, the 
first row in Table 1 (reading across the row left to right), for a skew of 0, 
with an overall sample size of 30 with n1/n2/n3 = (5/5/20), the Type I error 
rate for the NPL test is .056 and the Type I error rate for the ML test is .022.   

 
 

Table 1. Three group Type I error rates of the Nonparametric and 
Median versions of the Levene tests under equivalent variance 
conditions. 

 
 
 
It was the case that the Type I error rates of both tests was maintained 

in all of the conditions of the present study, thus power values for all of the 
simulated conditions will be reported.  Table 2 reports the power values of 
the ML test and the NPL tests when the population skew is equal to 0.  In 
nearly all of the cells of the Table 2 the two tests performed in a similar 
nature.   For example, in the first row of the table are the results for the NPL 
test, which, for a sample size of 30 with n1/n2/n3 = (5/5/20), and a ratio of 
variances of 1/1/4), the power is .385; that is, 38.5 percent of the null 
hypotheses were correctly rejected.  In comparison, the power of the ML 
test (the next row in the table) under the same conditions was .247. When 
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the total sample size was 30 the NPL test had a slight power advantage over 
the ML test in many of the cells of the design (i.e., 18 of the 24 cells in this 
section of the design); however, these power differences were small and in 
the cases when the ML had a power advantage, the differences were also 
small. When the sample size increased to 60 the power values of the two 
tests were very similar. When sample sizes were 90, the ML had a power 
advantage of the NPL in many of the cells of the design.  

 
 

Table 2. Three group power values of the Nonparametric and Median 
version of the Levene test for equality of variances for skew of zero.  

 
 
 

The next condition investigated in the three group simulation was 
where the skew of the population distribution was equal to 1. Table 3 
illustrates the power values of the NPL and the ML tests. When the sample 
size was 30, the NPL had small to moderate power differences with the ML 
test. For example, in Table 3 for the condition where N=30, n1/n2/n3 = 
5/5/20 and the variance ratio is 1/1/4, the NPL has a power value of .424 
and the ML has a power value of .184. In 23 of the 24 cells when the total 
sample size was equal to 30, the NPL possessed higher power values than 
the ML. As sample size increased to 60 and 90, the power differences 
between the two tests become smaller with the two tests performing quite 
similarly across the cells of the design.  
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Table 3. Three group power values of the Nonparametric and Median 
version of the Levene test for equality of variances for skew of one.  

 
 
 

The power values of the three group case where the skew of the 
population distribution is equal to 2 are listed in table 4. The NPL had 
higher power values than the ML in every cell of this part of the design. The 
magnitude of the power differences between the two tests ranged from 
moderate to large. For example, in the condition where N = 30, n1/n2/n3 
was 5/5/20 and the variance ratio was 1/1/4, the power of the NPL was .556, 
whereas the power for the ML was .092.  

Table 5 lists the power values of the ML and the NPL tests when the 
skew of the population distribution is equal to 3. The NPL possessed higher 
power values that the ML in every cell with power differences that are 
generally large. For example, in the condition where N = 30, n1/n2/n3 was 
5/5/20 and the variance ratio was 1/1/4, the power of the NPL was .713, 
whereas the power for the ML was .025. 
 

Four group simulation 
The Type I error rates for the NPL and ML are presented in Table 6. 

Type I error rates were maintained in every cell in the four group 
simulation. It should be noted that the Type I error of the NPL exceed .07 in 
few of the cells, but stayed within the bounds of .075 allowing for the 
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interpretation of the power values. For example, the condition where the 
total sample size is 40, n1/n2/n3/n4 4/4/16/16, the NPL has a Type I error 
rate of .070 and the ML has a Type I error rate of .061.  

 
 

Table 4. Three group power values of the Nonparametric and Median 
version of the Levene test for equality of variances for skew of two.  

 
 
 

Table 7 presents the power values of the two tests when the skew of 
the population distribution is equal to 0. Overall, power differences between 
the NPL and the ML are small. The NPL has a small power advantage over 
the ML in 16 of the 24 cells in the condition where total sample size is 
equal to 40. For example, in the condition where the total sample size is 40, 
n1/n2/n3/n4 is 4/4/16/16 and the ratio of variances is 1/1/2/4, the power of 
the NPL is .285 and the power for the ML is .189. When the total sample 
size is equal to 80 or 120, the ML has a small to moderate power advantage 
over the ML in 45 of the 48 cells. For example, when the total sample size 
is 80, n1/n2/n3/n/4 is 8/8/32/32 and the ratio of variances is 4/4/1/1 the NPL 
has a power value of .374, whereas the ML’s power is equal to .692.  
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Table 5. Three group power values of the Nonparametric and Median 
version of the Levene test for equality of variances for skew of three.  

 
 
 
Table 6. Four group Type I error rates of the Nonparametric and 
Median versions of the Levene tests under equivalent variance 
conditions. 

 
 

 
Table 8 lists the power values of the NPL and the ML tests when the 

skew of the population distribution is equal to 1. The NPL has a small to 
moderate power advantage over the ML in 20 of the 24 cells when the 
sample size is equal to 40. For example, when the total sample size is 40, 
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n1/n2/n3/n4 is 4/4/16/16 and the ratio of variances is 1/1/2/4, the NPL has a 
power value of .332, whereas the ML has a power value of .148.  
 
Table 7. Four group power values of the Nonparametric and Median 
version of the Levene test for equality of variances for skew of zero.  

 
 
 
Table 9 presents the power values of the two tests when the skew of 

the population distribution is equal to 2. The NPL has moderate to large 
power advantages over the ML in nearly every cell of the design. For 
example, when the total sample size is 40, n1/n2/n3/n4 is 4/4/16/16 and the 
ratio of variances is 1/1/2/4, the power of the NPL is .464 and the power of 
the ML is .094. In the conditions where the total sample size is 80 and 120, 
the NPL has small to moderate power differentials with the ML. For 
example, when the total sample size is 80, n1/n2/n3/n4 is 10/10/20/40 and 
the ratio of variance is 4/4/1/1, the NPL’s power is .651, whereas the ML’s 
power is .484.  
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Table 8. Four group power values of the Nonparametric and Median 
version of the Levene test for equality of variances for skew of one.  

 
 
 

Table 10 lists the power values of the two tests when the skew of the 
population distribution is equal to 3. The NPL possesses moderate to large 
power advantages over the ML. For example, in the condition where the 
total sample size is 40, n1/n2/n3/n4 is 8/8/8/16 and the ratio of variances is 
4/4/1/1, the NPL has a power value of .656 and the ML’s power is equal to 
.173. When the total sample size is 80 or 120, the NPL is more powerful 
than the ML in every cell of the design and in many cases the power 
difference is very large. For example, when the total sample size is 80, 
n1/n2/n3/n4 is 8/8/32/32 and the ratio of variances is 4/4/1/1, the power of 
the NPL is .697 and the power of the ML is .335. 
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Table 9. Four group power values of the Nonparametric and Median 
version of the Levene test for equality of variances for skew of two.  

 
 
 

Five group simulation 
Table 11 lists the Type I error rates for the ML and the NPL tests. 

Once again, the nominal Type I error rate was maintained for both tests in 
every cell of the design. The NPL did have some slightly elevated error 
rates in some of the cells of the design compared to the ML; however, these 
values are within the liberal criteria for robustness. For example, when the 
total sample size is 30, n1/n2/n3/n4/n5 is 3/3/6/6/12 and skew is zero, the 
NPL has a Type I error rate of .071 and the ML has a Type I error rate of 
.021. 

Table 12 presents the power values for the ML and the NPL tests 
when the skew of the population distribution is equal to 0. When the sample 
size was small the NPL has a small to moderate power advantage of the 
ML. For example, when the total sample size is 30, n1/n2/n3/n4/n5 is 
3/3/6/6/12 and the ratio of variances is 1/1/1/1/4, the NPL has a power value 
of .317 and the ML’s power is.189. When the overall sample size 60 or 90, 
the ML possesses small to moderate power advantage over the NPL in most 
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cells. For example, when the overall sample size is 60, n1/n2/n3/n4/n5 is 
6/6/12/12/24 and the variance ratio is 1/1/1/1/4, the power of the NPL is 
.576 and the power of the ML is .63. Overall, when the skew was equal to 
zero both tests performed similarly with the NPL performing slightly better 
when the sample sizes was small and the ML performing better when the 
sample sizes were larger.  

 
 

Table 10. Four group power values of the Nonparametric and Median 
version of the Levene test for equality of variances for skew of three.  

 
 

 
Table 13 lists the power values for the two tests when the skew of the 

population distribution is equal to 1. The NPL had a power advantage over 
the ML in every cell in the table except for two. The differences in power 
between the two tests are small in some cases (e.g., when N = 30, 
n1/n2/n3/n4/n5 = 3/3/6/6/12 and the variance ratio is 1/1/1/1/2, the NPL has 
a power value of .112 whereas the ML has a power value of .047. In many 
cells the differences in power are quite large (e.g., when N = 30, 
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n1/n2/n3/n4/n5 = 6/6/6/6/6 and the variance ratio is 1/1/1/1/2, the NPL has a 
power value of .527 and the ML’s power is .072.  
 
 
Table 11. Five group Type I error rates of the Nonparametric and 
Median versions of the Levene tests under equivalent variance 
conditions. 

 
 
 
 
Table 12. Five group power values of the Nonparametric and Median 
version of the Levene test for equality of variances for skew of zero.  
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Table 13. Five group power values of the Nonparametric and Median 
version of the Levene test for equality of variances for skew of one.  

 
 
 

Table 14 lists the power values for the two tests when the skew of the 
population distribution is equal to 2. The NPL demonstrated a power 
advantage over the ML in every cell of the table. Once again the power 
differences ranged from small to large. For example, when the total sample 
size was 30, the ratio of sample sizes was 3/3/6/6/12 and the ratio of 
variances was 1/1/1/1/2, the NPL had a small power advantage over the ML 
with values of .113 and .044 respectively. Whereas, when the total sample 
size was 30, the ratio of sample sizes was 3/3/6/6/12 and the ratio of 
variances was 1/1/1/1/2, the NPL had quite a large power advantage over 
the ML with values of .529 and .080 respectively.  

Table 15 lists the power values for the two tests when the skew of the 
population distribution is equal to 3. Once again, the NPL possessed a 
power advantage over the ML in every cell of the table. Once again the 
power differences ranged from small to large. For example, when the total 
sample size was 30, the ratio of sample sizes was 3/3/6/6/12 and the ratio of 
variances was 1/1/1/1/2, the NPL had a small power advantage over the ML 
with values of .119 and .039 respectively. Whereas, when the total sample 
size was 30, the ratio of sample sizes was 3/3/6/6/12 and the ratio of 
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variances was 1/1/1/1/2, the NPL had quite a large power advantage over 
the ML with values of .534 and .081 respectively.  

 
 

Table 14. Five group power values of the Nonparametric and Median 
version of the Levene test for equality of variances for skew of two.  

 
 

DISCUSSION 
The findings from the series of simulations that were conducted 

provide further support for the usefulness of the NPL when data are 
sampled from distributions that tend to be more heavily skewed. In general, 
the Type I error rates of the ML tended to be consistently lower than the 
NPL; however, the overly conservative nature of the ML tends to result in 
lower power values, which was demonstrated in the current simulations. In 
some of the cells in the current simulation design, the NPL had slightly 
elevated Type I error rates in comparison to the ML; however, they 
remained within the liberal criteria set out by Bradley (1978). Results 
support the utility of the NPL across a wide variety of ANOVA designs, 
especially when sample sizes are small and population distributions may be 
skewed or unknown. 
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Table 15. Five group power values of the Nonparametric and Median 
version of the Levene test for equality of variances for skew of three.  

 
 
 

When the overall sample sizes were in the larger two categories (e.g., 
60 and 90 for the five group simulation) and the skew of the population 
distribution was equal to 0, the ML had an overall power advantage over the 
NPL; however, when the overall sample sizes were smaller and the skew of 
the distribution was 1 or larger, the NPL was consistently more powerful 
than the ML.  

Interestingly, the power of both of the tests were impacted by the 
imbalance between the numbers in each group with more group imbalance 
leading to both increases and decreases in power. One pattern that tended to 
emerge in the results was that in the direct pairing condition, as the groups 
became more unbalanced the power of the NPL tended to increase and the 
power of the ML tended to decrease. Whereas, in the indirect pairing 
conditions, as the groups become imbalanced, the power of the ML tended 
to go up and the power of the NPL tended to decrease.   This pattern was 
not consistent across all conditions but did tend to coincide with the 
conditions where skew was higher (i.e., 2 or 3). In addition, the magnitude 
of the differences in the variances between the groups impacted the results. 
This finding makes intuitive sense as the magnitude difference between the 
variances essentially represents the effect size for this simulation study. 
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More interesting is the interaction of ratio of sample sizes and the ratio of 
variances. Note that in terms of impact of direct versus indirect pairing 
between the degree of imbalance between the groups sizes and the degree of 
inequality of the variances, the findings support those of Nordstokke and 
Zumbo (2010) whereby the NPL had a power advantage when the pairings 
were direct and the ML had a power advantage when the pairings were 
indirect. As noted by Nordstokke and Zumbo (2010), the direction of 
pairing impacts the mean square values in the model resulting in distorted 
expressions of variance.  

Even though the median version of the Levene test has been 
demonstrated to have good statistical properties and robustness, using it as 
the only comparison test reduces the generalizability of the results; 
however, future studies will include a broader spectrum of tests of variance 
(e.g., bootstrapping approaches) to further support the potential utility of the 
NPL. Nevertheless, the results of the current study are an important first 
step in establishing the usefulness of the NPL as a practical statistical tool 
that may be utilize in a wide variety of research settings where small sample 
sizes or skewed data are often found.   

One caveat that was present in Nordstokke and Zumbo (2010) is also 
present in this paper relates to the generalizability of the results. Since only 
Chi-square distributions were used in the simulation study, the results could 
reflect some idiosyncrasy present within the data generation method. This 
was done purposefully to replicate the method used by Nordstokke and 
Zumbo (2010). As mentioned in that paper, this does not invalidate the 
findings of the present study, but instead illustrates that a wider variety of 
distributions need to be used in future studies.  It is also important to note 
that this study used more liberal alpha criterion for assessing robustness 
than was used by Nordstokke and Zumbo (2010). In their study, .05 (± .01) 
and the current study used .05 (± .025). This allowed for a broader 
discussion of the results in terms of power; however, if the more strict 
criterion of .05 (± .01) had been used then there would have been several 
cells of the design where the Type I error of the NPL would have been 
elevated beyond the .06 level. This was evident in the four and five group 
cases and for the small sample size condition (e.g., N=40). A problem 
inherent the interpretation of simulation research of this nature is that no 
studies have been conducted that inform us on the limits of the allowable 
differences in variances for analysis of variance type tests. Put another way, 
we do not know what degree of variance heterogeneity (in combination with 
distributional disturbances, sample size, direct or inverse pairing of group 
size, etc.) is necessary to increase the Type I error rate of, for example, the 
ANOVA test of means to an unacceptable level. Future research will 
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investigate these bounds so that less arbitrary criterion for simulation 
studies can be established.  

 A point that deserves attention at this juncture has to do with the 
precision of the results. This simulation study was based on 5000 
replications and is intended to be used to inform about the statistical 
properties of the tests being investigated. The results that are presented are 
essentially point estimates of the “true” Type I errors and power of the tests 
under investigation and by are not presented as proof of the validity of the 
robustness of the NPL, but as evidence of its potential utility as a data 
analytic tool. Future studies will focus on investigating its further utility. 

To summarize, the simulation results demonstrate the potential utility 
of the NPL when data come from heavily skewed population distributions. 
This supports the findings of Nordstokke and Zumbo (2010) where the NPL 
maintained its Type I error rate and possessed high power values when 
population distributions were heavily skewed. It is important to note that the 
NPL has higher power when the total sample size is small across the three 
simulation studies. This suggests that the NPL has utility for research 
settings that tend to have yield smaller sample sizes and group membership 
often tends to be imbalanced or when data tend to be heavily skewed. This 
often occurs in psychological and health based research setting where 
access to participant populations can be challenging due to small 
populations or limited access to participants from their populations of 
interest.  
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APPENDIX 1 
SPSS syntax used to run the NPL for the present simulation study 
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